Abstract

In this study, hardness and impact resistance properties of automotive brake pad composed with rice husk dust (RHD) were documented. RHD was mixed with other metallic and synthetic ingredients of automotive brake pad. To obtain RHD, rice husk was ground and dried to 1 – 3% moisture content. The RHD was screened to obtain different dust sizes (80 and 100-mesh) before it was mixed with other materials at different percentages of composition (10 and 30%). The mixture was then pressed to produce brake pad. Rockwell hardness testing machine was used in hardness determination, while Izod impact testing machine was used in impact resistance determination. Hardness resistance of automotive brake pad mixed with 10% composition and 80-mesh size of RHD was significantly higher than 100-mesh. Hardness resistance of automotive brake pad mixed with 30% composition and 100-mesh size of RHD was slightly higher than 80 mesh. However, based on analysis, the difference was not significant. According to the result, hardness resistance of automotive brake pad mixed with 30% composition of RHD was higher than 10%. RHD has filled up the space and enhanced the micro structural behaviour of automotive brake pad. Impact resistance of automotive brake pad mixed with 10% composition and 80-mesh size of RHD was insignificantly higher than 100-mesh. Impact resistance of automotive brake pad mixed with 30% composition and 80-mesh size of RHD was significantly higher than 100 mesh. Large RHD size has increased the capability to resist high-rated impact loading. The impact energy was distributed over wider area for larger particle size. This factor has increased the impact resistance of automotive brake pad from large dust size. Impact resistance of automotive brake pad mixed with 80-mesh size and 30% composition of RHD was higher than 10%. In contrast, impact resistance of automotive brake pad mixed with 100-mesh size and 10% composition of RHD was higher than 30%. However, the difference was not significant. In comparison with commercial brake pad, automotive brake pad composed with RHD showed better hardness results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.