Abstract
Boron doped hydrogenated multiphase silicon–carbon (multiphase silicon–carbon) film has been grown by a plasma enhanced chemical vapour deposition (PECVD) method to obtain the properties of high conductivity and a low absorption coefficient. It consists of amorphous carbon, amorphous silicon and a crystalline silicon-like clustering phase. It has the advantage of reducing optical loss due to the wider band gap of amorphous carbon compared to amorphous silicon carbide. The film was fabricated in conditions of low power density with a high hydrogen flow rate to increase the ratio of the amorphous carbon. This result is able to be achieved because the reaction of Si-based and C-based radicals is suppressed by the deposition condition of low electron temperature (Te) of the plasma and the short residence time of the gases. The multiphase silicon–carbon showed high electrical conductivity and a low optical absorption coefficient in the short wavelength region. Applying it for use as a front contact layer in a Si thin film solar cell, it showed an improvement in the conversion efficiency due to the increase in the quantum efficiency in the short wavelength region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.