Abstract

Cold rolling (CR) was conducted on coarse grained (CG) and ultrafine-grained (UFG) coppers, obtained by 1 and 8 passes in the equal channel angel pressing (ECAP), to investigate the effect of grain size on rolling texture. The microstructure was refined to UFG (~420 nm) with the ECAP pass increased to 8, while only band-like CG microstructure was observed in the 1 pass processed copper. The influence of the texture before CR could be excluded as the crystallographic texture kept similar for different ECAP pass. Pole figures (PFs) showed that the shear texture introduced by ECAP was replaced by rolling texture after CR. Furthermore, the rolling texture was a kind of classical copper-type for the CG copper, while a brass-type rolling texture was observed in the UFG copper. TEM results confirmed that the deformation nanotwins were only observed in the UFG copper, while the microstructure of CG copper was further compressed and subdivided. It indicated that the observed differences in rolling texture component and density might be contributed to the grain size effect which resulted in different deformation mechanism and grain subdivision behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.