Abstract

Abstract Gas–solid flow regime in a novel multistage circulating fluidized bed is investigated in this study. Pressure fluctuations are first sampled from gas–solid flow systems and then are analyzed through frequency and time-frequency domain methods including power spectrum and Hilbert–Huang transform. According to the flow characteristics obtained from pressure fluctuations, it is found that the gas–solid motions in the multistage circulating fluidized bed exhibit two dominant motion peaks in low and high frequencies. Moreover, gas-cluster motions become intensive for the multistage circulating fluidized bed in comparison with the fast bed. Unlike the traditional methods, the fuzzy C-means clustering method is introduced to objectively identify flow regime in the multistage circulating fluidized bed on the basis of the flow characteristics extracted from bubbling, turbulent, fast, and multistage fluidized beds. The identification accuracy of fuzzy C-means clustering method is first verified. The identification results show that the flow regime in the multistage circulating fluidized bed is in the scope of fast flow regime under examined conditions. Moreover, the results indicate that the consistency of flow regime between two enlarged sections exists. In addition, the transition onset of fast flow regime in the multistage circulating fluidized bed is higher than that in the fast bed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.