Abstract

In this paper, hot and cold deep drawing processes are determined with direct deep drawing process and indirect deep drawing process. To predict the friction coefficient, the finite-element method, which can predict deformation behavior until the fracture of a blank sheet, was proposed using the forming limit diagram (FLD) curve. The effect of fracturing of the coating layer on the friction coefficient during the hot and cold deep drawing processes was investigated. The deformation behavior of the coating layer of the boron steel sheet that affects the friction coefficient in the hot and cold deep drawing processes was also proposed. A forming method that can control the surface condition of the formed product is further proposed by explaining the fracture of the coating due to the forming process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.