Abstract

In the present work, the influence of multiwalled carbon nanotubes (MWCNTs) on the flame retardancy and rheological, thermal and mechanical properties of polybutilen terephthalate (PBT) and polypropylene (PP) matrixes has been investigated. The carbon nanotube content in the thermoplastic materials was 2 and 5 wt‐%. The nanocomposites were obtained by diluting a masterbatch containing 20 wt‐% nanotubes using a twin‐screw extruder and the thermal properties were analysed by differential scanning calorimetry and thermogravimetric analysis; thermomechanical properties were determined by dynamic mechanical thermal analysis and the rheological behaviour was studied by a Thermo Haake Microcompounder. The results concerning the flame retardancy show that the MWCNTs are not equally effective as flame retardants in PP and PBT. The ignition time is increased only for PBT whereas the extinguishing time is decreased for PP and PBT. The reinforcement of the thermoplastics with multiwall carbon nanotubes is improved regarding the mechanical and thermal properties of the nanocomposites compared to pristine materials and the behaviour of thermoplastic nanocomposites regarding fire retardancy depends on the nature of the polymeric matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call