Abstract

Concave surfaces are widely used in the shells of smart devices, such as smartphones, watches, or molds. The quality of the concave surface is important in enhancing the value of these products. In order to improve the surface quality, the polishing process is crucial for removing defects on the concave surface and for smoothing the surface after machining or grinding. Magnetic assisted polishing is a promising method that can be used to meet the high standard of surface quality required. In this work, as a promising smart material in nano-precision polishing, magnetic compound fluid (MCF) slurry was used for the first time to polish a concave surface with a magnet that is magnetized in the radial direction. A simulation of the magnetic field distribution was performed in advance to clarify the polishing characteristics in theory. Subsequently, a polishing experiment was conducted to investigate the feasibility of this polishing method. Finally, the results demonstrated that both a curved surface and a flat surface could be polished successfully. Furthermore, the nano-precision PV value (the distance from the peak to the valley in the surface profile) and the surface roughness Ra were obtained for both areas, and this method was demonstrated to be capable of polishing concave surfaces and worthy of further research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call