Abstract

An advanced hybrid joining technology for joining metal and composite is introduced. Protrusions formed on the surface of the metal by electron beam are embedded into carbon fibre reinforced polymer layers and thus forms an integrated joint. The performance of a joint produced using such method was found to be better than traditional joints. In this paper, the properties of two different patterns of protrusions, including a linear pattern and a cylindrical pattern were studied by uniaxial tensile testing of double lap composite structures using digital image correlation. The distributions of strains in the composites tested varied and were found to be influenced by the shape of the protrusions which also resulted in different failure modes. The joints with a linear pattern failed between laminate layers, whereas the joints with a cylindrical pattern fractured at the interface of metal and composite. Furthermore, the tensile properties such as the ultimate tensile strength and elongation to failure of the joint with the linear pattern were around twice the value of the joint with the cylindrical pattern. Consequently, the performance of hybrid joints can be improved significantly by optimising the protrusion pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.