Abstract
Enhancement of dc bus voltage utilization for a five-level inverter with single dc source and capacitor-fed H-bridge (CHB) units is investigated in this paper. A carrier-based modulation technique is used for boosting the dc bus utilization, which is established by providing detailed mathematical analysis. The five-level inverter used here is realized by cascading a CHB unit to each phase of a three-level neutral point clamped inverter. The increase in dc bus voltage utilization owes to the pole voltage redundancies offered by CHB units. The floating capacitors of H-bridge units are balanced within a quarter fundamental cycle using the switching state redundancies of pole voltage levels. The aforementioned modulation technique allows the inverter to enhance the dc bus utilization from 0.577 $\text{V}_{\text{dc}}$ to 0.63 $\text{V}_{\text{dc}}$ under unity power factor. This enhancement is obtained in the linear modulation range without increasing the dc bus voltage, and thus, the inverter can operate without the presence of low-order harmonics in its phase voltages. The strength of this paper lies in its detailed mathematical analysis for finding out the limiting modulation index and power factor condition in the light of floating capacitor voltage balancing issue. Simulation as well as experimental verification of the modulation scheme is carried out on an induction motor drive under various operating conditions. It is shown that this carrier-based modulation technique is suitable for any single source inverter topology with one CHB unit per phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.