Abstract

In the present study, a homogeneous ultrafine grain structure composite consisting of metallic glass particles reinforcements was developed by equal-channel angular pressing (ECAP) process. The microstructure of composite was characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) techniques. The uniaxial compression test was used to determine the mechanical properties. The mechanisms of grain refinement during ECAP process were discussed based on the microstructural evolutions. A composite was successfully produced after four passes of ECAP, having an average grain size of 610 nm and compressive yield strength of 242 MPa. Also, the yield strength of composite after each pass was quantitatively estimated by considering all the effective strengthening mechanism. The findings showed that the dislocations strengthening mechanism with contribution of more than 50% plays a major role in strengthening the composite. There was a negligible gap between the experimental and theoretical values of yield strength for all ECAP pass numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call