Abstract
ABSTRACT To investigate the influence mechanisms of DC electric fields on the combustion of solid propellants, a numerical model for the combustion characteristics of AP/HTPB/Al composite solid propellant under the DC electric field is established. Effects of the applied electric field on combustion flame structure, combustion surface temperature distribution, and mixing fraction distribution are analyzed. The results indicate that the applied electric field enhances the mixing effect of the propellant gas phase decomposition products, thereby altering the flame structure and bringing it closer to the combustion surface. The application of the electric field leads to an increase in the combustion surface temperature by 20–70 K. The effect of the negative electric field on the combustion surface temperature and burning rate is more significant compared to that of the positive electric field. The results provide valuable theoretical guidance in the field of solid engine combustion control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.