Abstract

To investigate the energy evolution and storage characteristics of the rock during the mixed-mode fracture failure, several single loading-unloading tests under preset different unloading levels were conducted on the cracked straight-through Brazilian disc (CSTBD) red-sandstone specimen with crack inclination angles of 10° and 20°. The input energy, elastic energy, and dissipated energy parameters were obtained by calculating the area integral of the load-displacement curve. Test results display that the total input energy, elastic energy, and dissipated energy of rock specimens increase in quadratic function with the increase of unloading level at different unloading levels. It was found that there are significant linear energy storage and dissipation laws of rock during the mixed-mode fracture process. The concepts of fracture energy storage coefficient (FESC) and fracture energy dissipation coefficient (FEDC) were proposed to express the energy variation of rock in the prepeak stage. Under the same loading conditions, FESC and FEDC remain unchanged regardless of crack inclination angles, indicating that the linear energy storage and dissipation laws are an inherent property of the rock. Besides, the peak fracture elastic-dissipation index W ed (the ratio of peak elastic energy to peak dissipation energy) was obtained through quantitative analysis and demonstrated its invariant feature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.