Abstract

The hydrogen applicability of current gas turbines designed for traditional fuels needs to be improved. The influence of hydrogen addition to the performance of swirling methane-air combustion has been investigated for a counter-flow combustor. The combustor was simulated under certain swirl intensity for a 100 kW micro gas turbine fuelled by methane–hydrogen mixture. The predicted outlet temperature and the measured value based on practical combustors were compared. The effects of air distribution scheme and hydrogen content in fuel mixture on thermal characteristics were analyzed from the perspectives of multi fields and synergy. The results show that the scheme with primary air of 50%, secondary air of 20% and dilution air of 30% leads to an ideal temperature distribution at the exit. With the increase of hydrogen addition ratio, the outlet temperature decreases and the emission of pollutant NOX is controlled within an ultra-low range. When the hydrogen volume content exceeds 20%, the hydrogen addition has a great impact on the field synergy in the combustor, which is beneficial to the uniform temperature distribution at the exit and the relatively low flow resistance. These findings may supply guidance for the redesign and operation of the gas turbine using hydrogen-doped fuels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.