Abstract

A new series of eosin dye based poly(alkyloxymethacrylate)s was synthesized with an even number of side-chain methylene spacers by a free radical addition polymerization method for holographic optical data storage applications. These polymers were characterized by UV, IR and 1H NMR spectroscopy. The glass transition temperature and thermal stability of the polymers were investigated by DSC and TGA, respectively. As the spacer length increases in the side-chain, Tg, Tm and thermal stability of the polymers decrease, while a reverse trend was observed with film forming ability of the polymers. The optical characterization of the polymers was investigated by forming holographic grating using an Argon ion laser. The grating diffraction efficiency was found to depend not only on the concentration of polymeric film but also on the spacer length of the polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.