Abstract

Abstract The chaotic motion in periodic self-excited oscillators has been extensively investigated through experiments and computer simulations. However, with the advent of the study of chaotic motion by means of strange attractors, Poincar´e map, fractal dimension, it has become necessary to seek for a better understanding of nonlinear system with higher order nonlinear terms. In this paper we consider an extended Duffing-Van der Pol oscillator by introducing a nonlinear quintic term. The dynamical behaviour of the system is investigated by using Melnikov analysis and numerical simulation. The results can help one to understand the essence of given nonlinear system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.