Abstract

In order to study the nonlinear dynamic behaviors of Thermal Protection System (TPS) and the nonlinear dynamic strength of the strain-isolation-pad (SIP), a two degree-of-freedom nonlinear dynamic theoretical model was presented under the acoustic excitation and base excitation. The tile is simplified as a mass point, a linear spring and a damping element, and the SIP is simplified as a mass point, a nonlinear spring and a damping element. On this basis, the solving process of the nonlinear theoretical model and the iterative process of the equivalent linear stiffness coefficient of SIP were derived by the statistical linearization method. The dynamic responses analyzed by the nonlinear theoretical model and linear theoretical model are compared. The nonlinear stiffness of SIP shows obvious influence on behaviors of TPS and dynamic stress of SIP, and the equivalent linear stiffness of SIP is related to the types of excitations. Finally, the influences on above dynamic responses by the nonlinear stiffness level of SIP were studied. The equivalent linear stiffness coefficient of SIP, acceleration of TPS and dynamic stress of SIP decrease with the increase of the nonlinear level for the stiffness of SIP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call