Abstract

In this work, the dry sliding wear behaviors of pure monolithic magnesium and magnesium–titanium dioxide (Mg–TiO2) composites were studied using pin-on-disc tribometer against an oil-hardened nonshrinking die steel (OHNS) counter-disc with a normal load of 0.5–2[Formula: see text]kg and a sliding velocity of 1.5–2.5[Formula: see text][Formula: see text] with the sliding distance and wear track diameter of 1500[Formula: see text]m and 90[Formula: see text]mm, respectively. The pin samples were characterized for their microstructural, nanomechanical and tribological properties such as wear rate, coefficient of friction and wear fractographs. Scanning electron microscopy (SEM) was used to analyze the worn-out surfaces of each pin sample in order to identify the different types of wear and wear mechanisms and the chemical constituents of each element were quantified by energy-dispersive spectroscopy. The influence of TiO2 reinforcements on the nanomechanical behavior was studied by nanoindentation technique. As compared with pure Mg, the nanoindentation strengths of Mg–1.5TiO2, Mg–2.5TiO2 and Mg–5TiO2 composites were found to increase by 11.9%, 22.2% and 35.8%, respectively, which was due to the addition of TiO2 particles and also due to the good bonding at the interface of TiO2 and magnesium particles. From the wear test results, a significant change in wear rate was observed with the change in normal load than that of sliding speed, whereas a significant change in coefficient of friction was noticed with the changes in both normal load and sliding velocity. The dominant wear mechanisms involved under the testing conditions were identified through plotting the contour maps and SEM fractographs. Also, from the fractographs it was noticed that delamination and plowing effect have been the significant wear mechanisms observed during low wear rate of samples, whereas melting, delamination and oxidation wear have been observed during high wear rate of pure Mg and its composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.