Abstract

The high-temperature superconducting (HTS) strand, with high current capacity and a round or square cross section, is expected to have widely potential applications in current leads and superconducting power devices since it is easily insulated to avoid point charging. This paper describes a quasi-isotropic strand made from coated conductors. The magnetic field distribution and critical current characteristic of the strand in self-field are simulated by the finite-element method and tested in liquid nitrogen. The result indicates that this strand has high current-carrying capacity. The critical currents in different external magnetic fields and various orientations were measured. It is verified by the experiments that the strand has isotropic characteristics in low magnetic field and weak anisotropy in higher field. The potential of the strands with high engineering current density makes them also suitable for high-field magnets and high-voltage power applications, while maintaining flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.