Abstract

In this paper, the effect of water, air, and their combined injection from two different injection points is studied in order to reduce vorticity effects in a draft tube of prototype turbine working at three operating points. The flow from spiral case to the end of draft tube is simulated using the shear stress transport k–ω turbulence and two-phase models. Using an appropriate validation method, acceptable results were obtained under the noninjection condition. To determine suitable number of points and inlet flow rate for air injection as well as the appropriate nozzle diameter for air and water injection, a new method which considers the ratio of total loss to the pressure recovery factor is used, in addition to using the traditional method which calculates the total loss in the draft tube. Comparing results of the three types of injections shows air injection in the operating range greater than 70% of turbine design flow rate, is much more effective than water injection or the combination of air and water injection. However, in the operating range below 70%, either water or air injections are not suitable, but combination of these two fluids can improve system performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.