Abstract
Abstract It has been shown that a nanofluid consisting of nanoparticles dispersed in base fluid has much higher effective thermal conductivity than pure fluid. In this study, four kinds of nanofluids such as multiwalled carbon nanotube (MWCNT) in water, CuO in water, SiO 2 in water, and CuO in ethylene glycol, are produced. Their thermal conductivities are measured by a transient hot-wire method. The thermal conductivity enhancement of water-based MWCNT nanofluid is increased up to 11.3% at a volume fraction of 0.01. The measured thermal conductivities of MWCNT nanofluids are higher than those calculated with Hamilton–Crosser model due to neglecting solid–liquid interaction at the interface. The results show that the thermal conductivity enhancement of nanofluids depends on the thermal conductivities of both particles and the base fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.