Abstract
This paper mainly explores the feasibility of using desert sand (DS) and recycled aggregate in cement-stabilized bases. Recycled coarse aggregate (RCA) and DS serve as the substitutes of natural coarse and fine aggregates, respectively, in cement-stabilized bases. A four-factor and four-level orthogonal test is designed to analyze the unconfined compressive strength, splitting tensile strength, and compressive resilient modulus. Furthermore, this paper investigates the effects of cement content, fly ash (FA) replacement rate, RCA replacement rate, and DS replacement rate on the road performance of cement-stabilized bases composed of RCA and DS. The test results reveal that the performance of cement-stabilized bases with partial RCA instead of natural coarse aggregate (NCA) and partial DS instead of natural fine aggregate satisfies the road use. The correlation and microscopic analyses of the test results imply the feasibility of applying DS and recycled aggregate to cement-stabilized bases. This paper calculates and evaluates the life cycle of carbon emissions of desert sand and recycled coarse aggregate cement-stabilized macadam (DRCSM) and finds that both DS and RCA can reduce the carbon emissions of CSM, which has a positive effect on improving the environment and solving the climate crisis. It is hoped that this paper can offer a solid theoretical foundation for promoting the application of DS and recycled aggregate in road engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.