Abstract

Capacity loss was observed in Li-ion cells after mechanical deformation approaching the onset of internal short circuit (ISCr). In this paper, a series of indentation tests were carried out on commercial Li-ion cells of three capacities (500, 1500 and 2000 mAh). Both in-situ and ex-situ methods were used to investigate the mechanisms of indentation-induced capacity loss. After indentation test, the cell capacity reduced by 0.5%–6% of its original value. The incremental capacity (IC) analysis results showed that IC curves generally shifted to lower voltage region, indicating the increase in cell internal resistance. In addition, the fitting results of electrochemical impedance spectroscopy (EIS) indicated that mechanical indentation can result in a reduction in ohmic resistance and the increase in polarization resistance. Scanning electron microscopy (SEM) and X-ray computed tomography (XCT) results showed crushing of graphite, mud cracking of copper current collectors and enlarged pores in separator, which is proposed to be the main reasons for the increase in polarization resistance and permanent capacity loss. The rapid capacity loss due to mechanical abuse was compared with the long-term capacity fading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.