Abstract
Highly integrated and closely tolerated functional components can be produced by sheet-bulk metal forming which is the application of bulk forming operations on sheet metal. These processes are characterized by a successive and/or simultaneous occurrence of different load conditions which reduce the geometrical accuracy of the parts. One challenge within sheet-bulk metal forming is the identification of methods to control the material flow to improve the product quality. A suitable approach is the local modification of the tribological conditions. Within this study, requirements regarding the needed adaption of the tribological system for a specific process were defined by numerical investigations. The results reveal that a local increase of the friction leads to an improved geometrical accuracy. Based on these results, abrasive blasting as a method to modify the tool surface and thus influencing the tribological behaviour was investigated. For the determination of the tribological mechanism of blasted tool surfaces, the influence of different blasting media as well as blasting pressures on the surface integrity and the friction were determined. Additionally, the functional stability of a modification was investigated. Finally, the correlations between surface properties and friction conditions were used to derive the mechanisms of blasted tool surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.