Abstract

Engineers prefer reduced beam section (RBS) connections in steel moment frames built in earthquake zones due to their many benefits. The RBS shape design significantly affects joint behavior. This paper examines the effect of RBS geometry on joint behavior and seismic performance using ANSYS finite element analysis software. RBS connections are investigated using European profiles and steel grades due to the limited number of studies using European profiles in the literature. The simulation study is carried out in three stages. In the first stage, an experimental study in the literature is simulated, and the reliability of the created finite element model is checked. In the second stage, geometric changes are made to the verified numerical model, and the obtained new models are examined under monotonic loading to observe the effect of RBS geometry on moment-rotation behavior. In the third stage, the effect of the change in the RBS geometry on the seismic performance is investigated under cyclic loading. As a result of the study, the effects of various changes made in the RBS geometry on the joint behavior and seismic performance are presented graphically. By using the results of the analysis under monotonic loading, the regression analysis is carried out, and the formulas giving the elastic-plastic stiffness, elastic moment capacity, and elastic rotation angle of the support are derived. Besides, simulation models show that the RBS joints' seismic performance met the minimum criteria specified in the earthquake code (AISC/ANSI 341-16) when European steel profiles and quality are applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.