Abstract

To prevent the thrust bearing damage faults, the thrust bearing pad temperature and the static axial displacement variation are usually monitored and cared about, but axial vibration caused by axial dynamic excitation can also result in the severe rubbing. An electric oil pump system with overflow valve is designed on a similar industrial centrifugal compressor test-rig to apply the axial low-frequency excitation from 3 to 7 Hz, and the axial and radial vibration response amplitudes are analyzed. Then, the stiffness and damping coefficients of tilting-pad thrust bearing (TPTB) are identified by instrumental variable filter (IVF) algorithm to reveal the mechanism of TPTB dynamic characteristics affecting axial vibration. Finally, a fault case about surge and the rubbing of thrust bearing is studied. Compared with axial vibration, radial vibration does not directly correlate to axial excitation, and the axial frequency spectrum is an effective method to diagnose axial displacement faults; the static axial load, the dynamic excitation amplitude and the excitation frequency all exert influence on thrust bearing dynamic characteristics and axial vibration response. The research results can guide the design of thrust bearings and help to diagnose the axial displacement faults, while the test device and method can be used to measure the static and dynamic characteristics of thrust bearings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.