Abstract

Anisotropic mechanical behavior of the Ti-6Al-4V alloy is essential for its forming and service. Generally, it is preferable to minimize the in-plane anisotropy of Ti-6Al-4V sheet. The present work investigates the anisotropy of Ti-6Al-4V alloy by tensile tests along the rolling direction (RD), transverse direction (TD), and diagonal direction (DD) of the sheet, evaluating the anisotropic yield and flow behaviors and exploring the causes of these anisotropic properties. The intrinsic deformation mechanism of Ti-6Al-4V alloy tensioned along different directions was studied with Schmid factor and kernel average misorientation (KAM) analysis. The samples tensioned along the RD and TD of the sheet (denoted as RD sample and TD sample) show similar yield stress, while tensile along the DD (denoted as DD sample) leads to lower yield strength. The mechanical anisotropy exhibited by the Ti-6Al-4V sheet is closely related to the crystallographic texture. The flow stresses of the RD and TD samples are higher than that of the DD sample due to the higher density of dislocations generated during the tensile deformation, in which prismatic ⟨a⟩ dislocations make a great contribution to coordinating plastic deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call