Abstract
The electronic structure of AgGaSe2 has been investigated as a photocatalyst candidate by first-principles calculation. Our results demonstrate that the band edge positions of bulk AgGaSe2 straddle the water redox potentials. From the band offset calculation, we find that Al-doping of AgGaSe2 shifts the conduction band minimum upwards, whereas Cu-doping of AgGaSe2 shifts the valence band maximum upwards. By (Ag, Cu)(Ga, Al)Se2 alloying one can thereby tailor both the band edge positions and the band gap energy, and this effect provides an approach to optimize the band properties for overall water splitting. Moreover, AgGaSe2 forms a suitable junction with CuGaSe2 with a type-II band offset, which facilitates electron-hole separation. The AgGaSe2 and CuGaSe2 junction can be designed as a tandem photoelectrochemical device to improve the photocatalytic properties of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.