Abstract
The morphological and electrochemical investigation of 3-dimensional (3D) carbon foams coated with olivine structured lithium iron phosphate as function of the annealing time under nitrogen atmosphere is reported. The LiFePO4 as cathode material for lithium ion batteries was prepared by a Pechini-assisted sol–gel process. The coating has been successfully performed on commercially available 3D-carbon foams by soaking in aqueous solution containing lithium, iron salts and phosphates at 70°C for 2–4h. After drying-out, the composites were annealed at 600°C for different times ranging from 0.4 to 10h under nitrogen. The formation of the olivine-like structured LiFePO4 was confirmed by X-ray diffraction analysis performed on the powder prepared under similar conditions. The surface investigation of the prepared composites showed the formation of a homogeneous coating by LiFePO4 on the foams. The cyclic voltammetry curves of the composites show an enhancement of electrode reaction reversibility by increasing the annealing time. The electrochemical measurements on the composites showed good performances delivering a discharge specific capacity of 85mAhg−1 at a discharging rate of C/25 at room temperature after annealing for 0.4h and 105mAhg−1 after annealing for 5h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.