Abstract
Toward greater separation techniques for ions, a differential mobility analyzer (DMA) has been coupled with field asymmetric waveform ion mobility spectrometry (FAIMS) to take advantage of two mobility-related but different methods of separation. The filtering effect of the DMA allows ions to be selected individually based on low-field mobility and studied in FAIMS at variable electric field, yielding mobility separations in two dimensions. Because spectra fully describe ion mobility at variable field strength, results are then compared with a two-temperature theory-predicted mobility up to the fourth-order approximation. The comparison yields excellent results up to at least 100 Td, beyond which the theory deviates from experiments. This is attributed to two effects, the enlargement of the structure due to ion heating and the inelasticity of the collisions with the nitrogen bath gas. The corrected mobility can then be used to predict the dispersion plot through a newly developed implicit equation that circumvents the possible issues related to the more elaborate Buryakov equation. Our results simultaneously show that the DMA-FAIMS coupling yields complete information on ion mobility versus the field-strength to gas-density ratio and works toward predicting such spectra from ion structures and gas properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.