Abstract
In this study, Ce3+-doped Lu3Al5O12 garnet (LuAG) crystal detectors, with a density of ρ = 6 g/cm3 and an effective atomic number Zeff = 62, are proposed as promising materials for radiotherapy applications. This type of detector demonstrates excellent uniformity of structural and optical properties, high thermoluminescence (TL) light yield, optimal position of main TL glow peaks at temperatures around 245-295 °C, and high radiation stability. The set of TL detectors made from LuAG:Ce single crystal was used to evaluate the uniformity of dose and energy spectra of X-ray radiation from a clinical accelerator with 6 MV and 15 MV beams at the Department of Medical Physics, Oncology Center in Bydgoszcz, Poland, and γ-rays from a 60Co source at the National Institute of Oncology in Warsaw. The LuAG:Ce crystal detectors demonstrated highly promising results for registering X-ray radiation from accelerators with both 6 MV and 15 MV electron beams, as well as γ-rays from a 60Co source with energies of 1.17 and 1.33 MeV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.