Abstract

ABSTRACTThermoelectric materials with stable mechanical and chemical properties at high temperature are required for power generation applications. For example, gas temperatures up to 1000°C are normally present in the waste stream of industrial processes and this can be used for electricity generation. There are few semiconductor materials that can operate effectively at these high temperatures. One solution may be the use of wide bandgap materials, and in particular GaN-based materials, which may offer a traditional semiconductor solution for high temperatures thermoelectric power generation. In particular, the ability to both grow GaN-based materials and fabricate them into devices is well understood if their thermoelectric properties are favorable. To investigate the possibility of using III-Nitride and its alloys for thermoelectric applications, we synthesized and characterized room temperature thermoelectric properties of metal organic chemical vapor deposition grown GaN and InGaN with different carrier concentrations and indium compositions. The promising value of Seebeck coefficients and power factors of Si-doped GaN and InGaN indicated that these materials are suitable for thermoelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.