Abstract

Steel weld seams are characterized by heterogeneity of their microstructure. Microstructure affects the nature of the distribution, sign and magnitude of residual stresses. In combination with unfavorable factors (low temperature, metal hypoductility and an unsuccessful joint form) residual stresses lead to a decrease of load carrying capacity of a whole structure. In a weld seam residual stresses are distributed in a complex way and can affect the build quality of heavy section welded structures. Monitoring of residual stresses remains a big problem. Residual stresses in welds are often evaluated only by modeling. Unfortunately, all mathematical models describe the stress state of the welded material with low accuracy. Simple quality control, the results of which can be easy interpreted, is necessary. Welded joints made by manual arc welding and by automatic submerged arc welding were investigated. Butt seams of steel sheets of different thickness have been welded. Steel was low-carbon and low-alloyed. It is often used in welded structures for various purposes, including construction, and for pipelines manufacture. The temperature range of welded structures operation is very large – from-70 to 450С. The authors studied the structure of butt weld seams by the Barkhausen noise method, which is interesting as it represents an alternative to the known methods, which characterizes the structure and stress state of material. The relationship between the weld microstructure and magnetic noise is shown. Studies have allowed us to establish the relationship between the structure and magnetic properties and to evaluate the feasibility of applying the Barkhausen noise method to welded structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call