Abstract

New insight into the seasonal, diurnal and spatial distribution of water vapor on Mars has been obtained from analyzing the spectra of the short-wavelength channel (SW) of the Planetary Fourier Spectrometer (PFS) onboard Mars Express. The processed dataset, recorded between January 2004 and April 2005, covers the seasons from L S = 331 ° of Mars Year 26 to L S = 196 ° of the following year. In this period the mean column density around vernal equinox was 8.2 pr. μm. The maximum values during northern summer were about 65 pr. μm, located around 75° N latitude with a longitudinally inhomogeneous distribution. Regarding the atmospheric transport, the majority of polar water vapor remains in the north polar region while only about a quarter is transported southward. Geographically there are two water vapor maxima visible, over Arabia Terra and the Tharsis plateau, that are most likely caused both by atmosphere–ground interaction and by atmospheric circulation. A comparison with other instruments generally shows a good agreement, only the SPICAM results are systematically lower. Compared to the results from the PFS long-wavelength channel the results of this work are slightly higher. A strong discrepancy is visible northward of about 50° N during the northern summer that is possibly explained by a non-uniform vertical H 2O mixing. In particular, a confinement of the water to the lower few kilometers yields a much better agreement between the retrieved column densities of the two PFS channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.