Abstract

This study assessed the concentrations of specific volatile organic compounds (VOCs) inside vehicle cabins under different practical vehicle driving conditions in China. The mean concentrations of the VOCs, including benzene, toluene, xylene, ethylbenzene, styrene, formaldehyde, acetaldehyde, acetone, and acrolein, were 16.73 μg/m3, 66.02 μg/m3, 14.20 μg/m3, 6.78 μg/m3, 28.09 μg/m3, 16.43 μg/m3, 12.47 μg/m3, and 20.65 μg/m3 (the sum of acetone and acrolein), respectively. All the specified VOCs inside vehicle cabins were not exceeded the limits of the national standard. The in-cabin VOCs concentrations were investigated for 16 private vehicles under three ventilation conditions: (i) fan off and recirculation (RC) off, (ii) fan on and RC off, and (iii) fan on and RC on. The VOCs concentrations increased 50.46% (mean of the measured VOCs) when the ventilation condition changed from (ii) to (i), and increased 51.38% (mean of the measured VOCs) when ventilation condition changed from (ii) to (iii). Two vehicle models (vehicle model A and vehicle model B) were tested in the study to investigate the influence on in-cabin VOCs concentrations of two typical interior trims (leather, fabric). The VOCs concentrations inside B vehicles (leather interiors) were averagely 1.42 times larger than the concentrations in A vehicles (fabric interiors). For new vehicles, the concentrations of benzene, toluene, xylene, ethylbenzene, formaldehyde, acetaldehyde, acetone and acrolein were larger than the concentrations inside old vehicles by 12.89%, 103.54%, 123.14%, 104.20%, 6.26%, 6.31%, and 10.67%, respectively. The VOCs concentrations significantly increased as the raise of ambient temperature. Toluene, styrene, ethylbenzene, and xylene were the most sensitive VOCs to temperature, which increased 513.6%, 544.8%, 767.0%, and 597.7% as the temperature increased from 11 °C to 25 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.