Abstract

Gluten-free bread making success is closely linked to the biophysical behaviour of dough. Quality of these doughs is largely determined by the properties of their proteins and starch. This study aimed to explain, at the structural level the rheological behaviour of gluten-free rice-field bean dough compared to that of soft wheat. The conformational aspects of proteins and starch were studied using Fourier transformed infrared spectroscopy (FT-IR). Doughs of soft wheat, rice, field bean, mixture of rice-field bean flour and the same mixture where a portion of rice flour underwent hydrothermal treatment were studied. The results show that viscous and viscoelastic components of gluten-free doughs were changed by supplementation of rice with field bean flour. Most of gluten-free doughs possessed a higher storage modulus in comparison with soft wheat dough. Analysis of FT-IR spectra in the amide I region conveyed to find the differences relative to soft wheat flour dough showed that in non-gluten doughs the increase in β-sheet content was observed at the expense of β-turns. These results were confirmed by amide I deconvolution. Gluten-free doughs contained more β-sheet structure as compared to soft wheat dough and less β-turns inducing high structuralization level that characterized this type of dough matrix. Concerning starch, the supplementation with rice-field bean generated the reorganization of field bean and rice doughs starches approaching that of wheat dough.

Highlights

  • Gluten-free baking is a big challenge for food technologists and cereal researchers

  • The results show that viscous and viscoelastic components of gluten-free doughs were changed by supplementation of rice with field bean flour

  • The high water absorption can be explained by the hydrophilic nature of rice flour

Read more

Summary

Introduction

Gluten-free baking is a big challenge for food technologists and cereal researchers. The secret of wheat bread dough quality lies within the unique properties of gluten proteins. Under the effect of hydration and the energy provided by kneading, gliadins and glutenins present in the dough form a continuous viscoelastic network. The presence of gluten is closely related to the dough and bread quality (Sivam et al 2013). Gluten-free bread doughs showed various differences in rheological properties compared to those of soft wheat. They displayed much less cohesiveness and elasticity than wheat dough.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call