Abstract

In this work, we have investigated three different surface passivation technologies: classical thermal oxidation (CTO), rapid thermal oxidation (RTO) and silicon nitride by plasma enhanced chemical vapor deposition (PECVD). Eight different passivation properties including SiO2/SiNx stacks on phosphorus diffused (100 and 40 Ω/Sq) and non-diffused 1 Ω cm FZ silicon were compared. Both types of SiO2 layers, CTO and RTO, yield a higher effective lifetime on the emitter surface than on the non-diffused surface. For the SiNx layers the situation is reverted. On the other hand, with SiO2/SiNx stacks high lifetimes are obtained not only non-diffused surface but also on the diffused surface. Thus, we have chosen the RTO/SiNx stack layers as front and rear surface passivation in solar cells, which passivate relatively good on the surface and has very low-weighted reflection. On planar cells passivated with RTO/SiNx a very high Voc of 675.6 mV and a Jsc of 35.1 mA/cm2 was achieved. Compared to a planar cell using CTO the efficiency of RTO/SiNx cell is 0.8% higher (4.5% relative). It can be concluded that the RTO/SiNx layers are the optimal passivation for the front and rear surface. On the other hand, for textured cells, the Jsc and FF of RTO/SiNx cells are lower than those of CTO cells. The main reasons of these Jsc and FF losses were also discussed systematically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call