Abstract

The combined method of generating electric and heat energy at CHP plants has been and remains the most effective way of fuel saving both in housing and communal services and in industry. In Russia, historically, a qualitative method of regulation has been adopted, which consists in changing the temperature of the fluid depending on the change in the temperature of the outside air at a constant flow rate of the fluid. An analysis of the heat supply schemes of a number of Russian cities revealed that central quality regulation at heat sources has practically ceased everywhere. In modern methods of calculating the qualitative and quantitative regulation, the main load is heating, and the load of hot water is taken into account only by increasing the flow rate of network water and the variable modes of joint operation of heating and hot water systems are not calculated. Thus, at present, there are no methods for calculating the qualitative and quantitative regulation, allowing to fully taking into account the effect of the load of hot water on the operation of heating systems. Therefore, in modern conditions, the previously developed methods and technological methods of controlling the combined heat load are characterized by a decrease in efficiency, and, accordingly, the problem of their optimization arises. For different temperatures of outdoor air, the calculation of variable operating modes of the heat supply system was carried out, which showed that the existing schedules of qualitative and quantitative regulation cannot provide a comfortable temperature condition of the premises. Under the conditions of a connected supply of heat, simply adding up the flows of network water for heating and hot water supply fails to achieve optimal thermal conditions for the premises. Therefore, further improvement of the technology of the central qualitative and quantitative regulation of the heat load taking into account hot water supply is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.