Abstract

The luminescence of uranium in strontium borate (SrB4O7, SBO) matrix was investigated by time resolved photoluminescence, thermoluminescence (TSL) and electron spin resonance techniques (ESR). The samples were synthesized using solid state fusion reaction route and characterized by X-ray diffraction. Photoluminescence excitation and emission data suggested the stabilization of uranium as uranate (UO66-) in the matrix. Luminescence decay time data suggested the stabilization of uranium at two different sites in the matrix. By giving suitable delay times and choosing proper gate widths, the two emission spectra due to the two uranate species could be obtained. Thermoluminescence investigation on the gamma-rays irradiated sample showed a strong glow peak at ∼415K and a weak glow peak at 505K. The dose response behavior, the trap parameters along with the order of kinetics for the strong glow peak were determined. To pinpoint the exact chemical nature of the defect centers responsible for the observed glow peaks, electron spin resonance technique was employed. Based on the ESR-TSL correlation data and the observed photoluminescence results, a plausible mechanism for the origin of the luminescence in the system was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.