Abstract

The results of an investigation of the unsteady flow structure in a turbulent swirling jet obtained using the PIV technology are presented. The greater part of the measurements is carried out at the swirl intensity W0 ≈ 1.7. A part of the data is obtained under other conditions of the swirl jet outflow. To establish the relation between disturbances of different types the phase averaging technique is employed with the pressure fluctuation in the acoustic field of the jet taken as a reference signal. The flow structure is numerically calculated. The results of the investigation show that a quasisteady inhomogeneity observable in the jet flow executes rotational motion relative to the mean flowfield in the jet cross-section, or “precession”. It causes disturbances in the flow ejected by the jet, which transform into acoustic disturbances far away from the jet. The frequencies of the dynamic disturbances near the jet and the acoustic disturbances far away from it coincide with the precession frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.