Abstract

In this paper, the Large Eddy Simulation (LES) combined with the Schnerr–Sauer cavitation model and the permeable Ffowcs Williams–Hawkings (FW-Hpds) acoustic analogy approach are introduced to study the unsteady cavitation behaviors and the radiated noise characteristics of the transient liquid nitrogen (LN2) cavitating flow around a NACA66 (National Advisory Committee for Aeronautics) hydrofoil. Satisfactory agreement is obtained between the numerical predictions and experimental measurements. The cavitation noise is predicted based on the sound radiation theory for spherical bubbles and compared with the sound pressure levels of non-cavitating flow from the FW-Hpds equation. It is found that the cavity volume acceleration is directly responsible for driving the generation of cavitation noise, and the sound pressure caused by the development of LN2 cavitation is shown to vary with the periodic pulsing cavity volume evolution, indicating a strong link between cavity evolutions and radiated noises. The transient cavitation structures of the sheet and cloud cavitation are well captured, and the evolution features of the cavities and vortex structures are analyzed in detail. The collapse of the detached small cloud cavity downstream is the main mechanism for generating intense acoustic impulses for both sheet and cloud cavitation. While the strong interaction between the re-entrant jet and the main flow results in violent pressure fluctuations, and thus produces instantaneous extreme dipole noise, which accounts for another distinctive mechanism to induce intense acoustic impulses for cloud cavitation, the presented study provides a deep understanding of the nature of cavitation-dominated noise for cryogenic cavitating flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call