Abstract

We present a comprehensive study of the adsorption of bis(phthalocyaninato)lutetium(III) (LuPc$_2$) on highly oriented pyrolytic graphite(0001) (HOPG). The growth and self-assembly of the molecular layers as well as the electronic structure has been investigated systematically using scanning tunnelling microscopy and scanning tunnelling spectroscopy combined with density functional theory (DFT) calculations and molecular mechanics simulations. We reveal that the adsorption of LuPc$_2$ leads to the formation of a square-like close-packed structure on the almost inert surface of HOPG, which is corroborated by simulations. Moreover, we observed a parallel orientation of the LuPc$_2$ molecules in the first monolayer, whereas in subsequent layers an increasing tilt out of the surface plane was found. Tip-sample distance-dependent tunnelling spectroscopy measurements allowed us to detect a shift in the energy positions of the peaks assigned to the lowest unoccupied molecular orbital toward the Fermi energy with decreasing tip-sample separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.