Abstract
This research examines ultrasonic wave propagation in air-saturated plastic foams used for noise pollution reduction, questioning the effectiveness of current models such as the well known Johnson-Champoux-Allard model at high frequencies. These foams present a challenge for existing models to accurately depict visco-inertial and thermal interactions within their pores. The study highlights the model's failure to align experimental results with theoretical predictions. It introduces novel parameters denoted as Σ and V for viscous effects, and Σ′ and V ′ for thermal effects, to improve the representation of fluid-sturcture interactions. These parameters suggest a more significant boundary layer effect within the pores than previously considered. This approach aims to provide additional physical context for the principles governing the behavior of highly attenuating porous media and to explore new avenues for material characterization that surpass the limitations of existing models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTER-NOISE and NOISE-CON Congress and Conference Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.