Abstract

The velocity field created by a plunging breaking wave on a smooth bottom with slope 1 : 17 was studied experimentally in a wave flume. Laser Doppler anemometry was used to investigate the flow field above the bottom boundary and below the trough level of the wave. Turbulence intensities, Reynolds stresses, and turbulent kinetic energy were examined. The results show that large-scale motions dominate in turbulence under the plunging breaker. The flow has characteristic features of an outer surf zone. It is found that turbulent quantities in the zone close to the bottom depend on the nature of the flow acceleration. During the deceleration phase, all turbulent quantities reach their maximum values. In the layers close to the wave trough, turbulent quantities depend on the wave parameters. Turbulent kinetic energy reaches its maximum value under the wave crest and decreases rapidly to a constant value under the wave trough. Turbulence is generated on the surface during the breaking process and it diffuses towards the bottom. The energy level first decreases downward and then increases again close to the bottom due to the bottom boundary layer turbulence. Kinetic energy is transported landward in the upper layers of the flow and seaward near the bottom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.