Abstract

In order to investigate the metastatic potential of tumors in vivo by measuring hyaluronic acid metabolism, C57BL/6 mice with B16 melanoma variants and C3H/He mice with FM3A tumor variants were evaluated using N-[ 18F]fluoroacetyl- d-glucosamine ( 18F-GlcNFAc). The uptake of 18F-GlcNFAc was slightly higher ( P < 0.05) in B16-F10 tumors (high metastatic potential) than in B16-F1 (low metastatic potential). Analysis of metabolites showed that acid-insoluble fraction was the largest one in the liver by 60 min, whereas in the tumors, phosphates fraction was the major metabolite. Slower metabolism in tumors was suggested, and it may be one of the reasons for the difficulty of detecting the characteristics of their hyaluronic acid synthesis. 18F-GlcNFAc uptake by FM3A variants showed no significant correlation with their metastatic potential. In addition, N-acetyl- d-[l- 14C]glucosamine, 2-deoxy- d-[l- 14C]glucose and [6- 3H]thymidine failed to demonstrate any difference between tumors' metastatic variants in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.