Abstract

AbstractPoleward moving auroral forms (PMAFs) are thought to be an ionospheric signature of dayside magnetic reconnection. While PMAFs are more likely to occur when the interplanetary magnetic field (IMF) is southward, how often PMAFs are triggered by changes in solar wind parameters is still an open question. To address this issue, we used one of the Automatic Geophysical Observatories all‐sky imagers in Antarctica and the Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C satellites, which can give solar wind measurements much closer to the subsolar bow shock than by Wind or ACE, to examine if PMAFs occurred in association with IMF orientation changes. We identified 60 PMAFs in conjunction with THEMIS B and C during 2008, 2009, and 2011 and 70% of events show reduction of Bz before PMAF onset indicating that IMF southward turning plays an important role in triggering a majority of PMAFs. In contrast, the magnitude of the IMF Bz reduction in OMNI data was smaller and the reduction occurred in a slightly smaller percentage of events (40–60%). This suggests that solar wind structures that missed the L1 point or evolution of solar wind between the L1 point and THEMIS may be important for identifying IMF changes responsible for transient dayside reconnection. Additionally, 17 PMAFs that did not have substantial IMF southward turnings are correlated well with foreshock events, indicating that foreshock phenomena may also play a role in triggering PMAFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call