Abstract

AbstractThis study examined the effects of addition of alumina nanoparticles on the microstructure, tribological and corrosion properties of CuTi alloy. Mechanical alloying was performed employing satellite ball milling. X-ray diffraction revealed that CuTi solid solution was formed after 40 h of mechanical alloying. Mechanically alloyed powder was cold-pressed and sintered at 850 °C. Alumina nanoparticles were uniformly dispersed in the CuTi alloy matrix. Tribological properties of the samples were evaluated by pin-on-disk wear testing. The results showed a decrease in wear rate by 30 % owing to the presence of nanoparticles in the nanocomposite. The corrosion properties of samples were assessed employing potentiodynamic polarization and immersion methods in a 3.5 wt.% NaCl solution. The corrosion current density of CuTi alloy decreased from 125.9 to 6.3 μA · cm−2 following the addition of alumina nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.