Abstract

An open photoacoustic cell under heat transmission configuration has been employed to evaluate the thermal and transport properties of n-type Si doped GaAs epitaxial layer and p-type Be doped GaAs epitaxial layer grown on GaAs substrate by molecular beam epitaxial method. The variation of the characteristics of the photoacoustic signal with chopping frequency clearly indicate the different heat generation mechanisms occurring in the sample under optical excitation at 2.54eV with laser beam. The values of thermal diffusivity, diffusion coefficient, surface recombination velocity and nonradiative recombination time have been evaluated for the sample by fitting the experimentally obtained phase of the photoacoustic signal with the theoretical model. It has been observed that the nature of dopant influences the values of thermal and transport properties of the semiconductor samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.