Abstract
We demonstrate the improvement of the transmission performance based on intermixing noise mitigation techniques in a multiple intermediate-frequency-over-fiber (IFoF) based mobile fronthaul. The interaction between fiber chromatic dispersion and frequency chirp of the directly modulated laser generates the second-order distortion that degrades the performance of multi-IFoF transmission system. To avoid second-order distortion, we use intermediate frequency (IF) spacing optimization and octave-confined frequency plan schemes in which intermixing noise would be generated in the out of signal band and would not affect the quality of transmitted signal. For bandwidth efficient transmission of radio signal over mobile fronthaul link, we employ the dispersion compensation technique to suppress the intermixing noise sufficiently. For realization of the multi-IFoF based mobile fronthaul, we experimentally investigate the transmission performances of 48-, 72- and 144-IF carriers of the long term evolution-advanced (LTE-A) signals mapped with 64-quadrature amplitude modulation (QAM). It is clearly observed that the intermixing noise is suppressed owing to dispersion compensation technique and overall system performances are improved by IF spacing optimization and octave-confined frequency plan. As a result, we successfully transmit 144-IF carriers of the LTE-A signal with less than 8% error vector magnitude (EVM) over 20-km single-mode fiber (SMF) within only 3 GHz bandwidth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.