Abstract

In this article, we present evidence of a distinct class of extreme events that occur during the transient chaotic state within network modeling using the Brusselator with a mutually coupled star network. We analyze the phenomenon of transient extreme events in the network by focusing on the lifetimes of chaotic states. These events are identified through the finite-time Lyapunov exponent and quantified using threshold and statistical methods, including the probability distribution function (PDF), generalized extreme value (GEV) distribution, and return period plots. We also evaluate the transitions of these extreme events by examining the average synchronization error and the system’s energy function. Our findings, validated across networks of various sizes, demonstrate consistent patterns and behaviors, contributing to a deeper understanding of transient extreme events in complex networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.