Abstract
The aim of the paper is to present a three dimensional transient cooling analysis of an automobile cabin with a virtual manikin under solar radiation. In the numerical simulations the velocity and the temperature distributions in the automobile cabin as well as around the human body surfaces were computed during transient cooling period. The surface-to-surface radiation model was used for calculations of radiation heat transfer between the interior surfaces of the automobile cabin and a solar load model that can be used to calculate radiation effects from the sun's rays that enter from the glazing surfaces of the cabin was used for solar radiation effects. Inhomogeneous air flow and non-uniform temperature distributions were obtained in the automobile cabin and, especially in ten minutes of cooling period, high temperature gradients were computed and measured and high temperature values were obtained for the surfaces which were more affected from the sunlight. Validations of the numerical results were performed by comparing numerical data with the experimental data presented in this study. It is shown that the numerical results were good agreement with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.